Для дискретной
Если x - дискретная случайная величина, принимающая значения x1 < x2 < … < xi < … с вероятностями p1 < p2 < … < pi < …, то таблица вида
x1 | x2 | … | xi | … |
p1 | p2 | … | pi | … |
называется распределением дискретной случайной величины.
Функция распределения случайной величины, с таким распределением, имеет вид
У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:
1 | 2 | 3 | 4 | 5 | 6 |
1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |
Для абсолютно непрерывной
Если функция распределения Fx (x) непрерывна, то случайная величина x называется непрерывной случайной величиной.
Если функция распределения непрерывной случайной величины дифференцируема, то более наглядное представление о случайной величине дает плотность вероятности случайной величины px(x), которая связана с функцией распределения Fx (x) формулами
и .
Отсюда, в частности, следует, что для любой случайной величины .
Комментариев нет:
Отправить комментарий