Определение.
Угол между прямой и плоскостью — это угол между прямой и ее проекцией на эту плоскость.Формула вычисления угла между прямой и плоскостью
Если в пространстве заданы направляющий вектор прямой L
и уравнение плоскости
то угол между этой прямой и плоскостью можно найти используя формулу
sin φ = | | A · l + B · m + C · n | |
√A2 + B2 + C2 · √l2 + m2 + n2 |
Вывод формулы для вычисления угла между прямой и плоскостью
Из уравнения прямой можно найти направляющий вектор прямой
s = {l; m; n}
Из уравнения плоскости вектор нормали плоскости имеет вид
q = {A; B; C}
Из формул скалярного произведения векторов найдем косинус угла между нормалью к плоскости и направляющим вектором прямой
cos ψ = | | q · s | |
| s | · |q | |
Так как φ = 90° - ψ, то синус угла между прямой и плоскостью sin φ = cos ψ.
Расписав скалярное произведение векторов и модуль векторов через их координаты, получим формулу для вычисления угла между прямой и плоскостью.
Комментариев нет:
Отправить комментарий