четверг, 1 января 2015 г.

Декартова и полярная системы координат

Декартова система координат

Декартова прямоугольная система координат определяется заданием линейной единицы для измерения длин и двух взаимно перпендикулярных осей, занумерованных в каком-нибудь порядке.

Точка пересечения осей называется началом координат, а сами оси - координатными осями. Первая из координатных осей называется осью абсцисс, вторая - осью ординат.

Начало координат обозначается буквой О, ось абсцисс - символом Ох, ось ординат - символом Оу.

Координатами произвольной точки М в заданной системе называют числа
( см. рис. 1), где  и  суть проекции точки М на оси Ох и Оу,  обозначает величину отрезка  оси абсцисс,  - величину отрезка  оси ординат. Число х называется абсциссой точки М, число у - ординатой этой же точки. Символ М(х; у) обозначает, что точка М имеет абсциссой число х, а ординатой число у.
Ось Оу разделяет всю плоскость на две полуплоскости; та из них, которая расположена в положительном направлении оси Ох, называется правой, другая - левой. Точно так же ось Оу разделяет плоскость на две полуплоскости; та из них, которая расположена в положительном направлении оси Оу, называется верхней, другая нижней.


Обе координатные оси вместе разделяют плоскость на четыре четверти, которые нумеруют по следующему правилу: первой координатной четвертью называется та, которая лежит одновременно в правой и в верхней полуплоскости, второй - лежащая в левой и в верхней полуплоскости, третьей - лежащая в левой и в нижней полуплоскости, четвертой - лежащая в правой и в нижней полуплоскости.

Полярна система координат

Полярная система координат определяется заданием некоторой точки О, называемой полюсом, исходящего из этой точки луча ОА, называемого полярной осью, и масштаба для измерения длин. Кроме того, при задании полярной системы должно быть сказано, какие повороты вокруг точки О считаются положительными (на чертежах обычно положительными считаются повороты против часовой стрелки).

Полярными координатами произвольной точки М (относительно заданной системы) называются числа  и  (см. рис.). Угол  при этом следует понимать так, как принято в тригонометрии. Число  называется первой координатой, или полярным углом точки М ( называются также амплитудой).
Символ М() обозначает, что точка М имеет полярные координаты  и .
Полярный угол  имеет бесконечно много возможных значений (отличающихся друг от друга на величину вида , где - целое положительное число). Значение полярного угла, удовлетворяющее неравенствам , называется главным.

В случаях одновременного рассмотрения декартовой и полярной систем координат условимся: 1). Пользоваться одним и тем же масштабом, 
2). При определении полярных углов считать положительным повороты в том направлении, в каком следует вращать положительную ось абсцисс, чтобы кратчайшим путем совместить ее с положительной осью ординат (таким образом, если оси декартовой системы находятся в обычном расположении, то есть ось Ох направлена вправо, а ось Оу - вверх, то и отсчет полярных углов должен быть обычным, то есть положительными следует считать те углы, которые отсчитываются против часовой стрелки).

При этом условии, если полюс полярной системы координат совпадает с началом декартовых прямоугольных координат, а полярная ось совпадает с положительной полуосью абсцисс, то переход от полярных координат произвольной точки х к декартовым координатам той же точки осуществляется по формулам
.
В этом же случае формулы
являются формулами перехода от декартовых координат к полярным.

При одновременно рассмотрении в дальнейшем двух полярных систем координат условимся считать направление положительных поворотов и масштаб для обеих систем одинаковыми.

Комментариев нет:

Отправить комментарий