суббота, 3 января 2015 г.

Собственные числа и собственный вектор линейного оператора.

Наиболее просто устроены матрицы диагонального вида . Возникает вопрос, нельзя ли найти базис, в котором матрица линейного оператора имела бы диагональный вид. Такой базис существует. 
Пусть дано линейное пространство Rn и действующий в нем линейный оператор A; в этом случае оператор A переводит Rn в себя, то есть A:Rn → Rn.
Определение. Ненулевой вектор  называется собственным вектором оператора A, если оператор A переводит  в коллинеарный ему вектор, то есть . Число λ называется собственным значением или собственным числом оператора A, соответствующим собственному вектору .
Отметим некоторые свойства собственных чисел и собственных векторов.
1. Любая линейная комбинация собственных векторов  оператора A, отвечающих одному и тому же собственному числу λ, является собственным вектором с тем же собственным числом.
2. Собственные векторы  оператора A с попарно различными собственными числами λ1, λ2, …, λmлинейно независимы.
3. Если собственные числа λ12= λm= λ, то собственному числу λ соответствует не более m линейно независимых собственных векторов.
Итак, если имеется n линейно независимых собственных векторов , соответствующих различным собственным числам λ1, λ2, …, λn, то они линейно независимы, следовательно, их можно принять за базис пространства Rn. Найдем вид матрицы линейного оператора A в базисе из его собственных векторов, для чего подействуем оператором A на базисные векторы:  тогда .
Таким образом, матрица линейного оператора A в базисе из его собственных векторов имеет диагональный вид, причем по диагонали стоят собственные числа оператора A.
Существует ли другой базис, в котором матрица имеет диагональный вид? Ответ на поставленный вопрос дает следующая теорема.
Теорема. Матрица линейного оператора A в базисе  (i = 1..n) имеет диагональный вид тогда и только тогда, когда все векторы базиса - собственные векторы оператора A.

Правило отыскания собственных чисел и собственных векторов


Пусть дан вектор , где x1, x2, …, xn - координаты вектора  относительно базиса  и  - собственный вектор линейного оператора A, соответствующий собственному числу λ, то есть . Это соотношение можно записать в матричной форме
. (*)

Уравнение (*) можно рассматривать как уравнение для отыскания , причем , то есть нас интересуют нетривиальные решения, поскольку собственный вектор не может быть нулевым. Известно, что нетривиальные решения однородной системы линейных уравнений существуют тогда и только тогда, когда det(A - λE) = 0. Таким образом, для того, чтобы λ было собственным числом оператора A необходимо и достаточно, чтобы det(A - λE) = 0. 
Если уравнение (*) расписать подробно в координатной форме, то получим систему линейных однородных уравнений:
 (1)
где  - матрица линейного оператора.
Система (1) имеет ненулевое решение, если ее определитель D равен нулю

Получили уравнение для нахождения собственных чисел. 
Это уравнение называется характеристическим уравнением, а его левая часть - характеристическим многочленом матрицы (оператора) A. Если характеристический многочлен не имеет вещественных корней, то матрица A не имеет собственных векторов и ее нельзя привести к диагональному виду. 
Пусть λ1, λ2, …, λn - вещественные корни характеристического уравнения, причем среди них могут быть и кратные. Подставляя по очереди эти значения в систему (1), находим собственные векторы.
Пример 12. Линейный оператор A действует в R3 по закону , где x1, x2, .., xn - координаты вектора  в базисе . Найти собственные числа и собственные векторы этого оператора.
Решение. Строим матрицу этого оператора:
 .
Составляем систему для определения координат собственных векторов:

Составляем характеристическое уравнение и решаем его:
.
λ1,2 = -1, λ3 = 3.
Подставляя λ = -1 в систему, имеем:
 или 
Так как , то зависимых переменных два, а свободное одно.
Пусть x1 - свободное неизвестное, тогда  Решаем эту систему любым способом и находим общее решение этой системы:  Фундаментальная система решений состоит из одного решения, так как n - r = 3 - 2 = 1.
Множество собственных векторов, отвечающих собственному числу λ = -1, имеет вид: , где x1 - любое число, отличное от нуля. Выберем из этого множества один вектор, например, положив x1 = 1: .
Рассуждая аналогично, находим собственный вектор, отвечающий собственному числу λ = 3: .
В пространстве R3 базис состоит из трех линейно независимых векторов, мы же получили только два линейно независимых собственных вектора, из которых базис в R3 составить нельзя. Следовательно, матрицу A линейного оператора привести к диагональному виду не можем.
Пример 13. Дана матрица .
1. Доказать, что вектор  является собственным вектором матрицы A. Найти собственное число, соответствующее этому собственному вектору.
2. Найти базис, в котором матрица A имеет диагональный вид.
Решение.
1. Если , то  - собственный вектор
.
Вектор (1, 8, -1) - собственный вектор. Собственное число λ = -1.
Диагональный вид матрица имеет в базисе, состоящем из собственных векторов. Один из них известен. Найдем остальные.
Собственные векторы ищем из системы:

Характеристическое уравнение: ;
(3 + λ)[-2(2-λ)(2+λ)+3] = 0; (3+λ)(λ2 - 1) = 0
λ1 = -3, λ2 = 1, λ3 = -1.
Найдем собственный вектор, отвечающий собственному числу λ = -3:

Ранг матрицы этой системы равен двум и равен числу неизвестных, поэтому эта система имеет только нулевое решение x1 = x3 = 0. x2 здесь может быть любым, отличным от нуля, например, x2 = 1. Таким образом, вектор (0,1,0) является собственным вектором, отвечающим λ = -3. Проверим:
.
Если λ = 1, то получаем систему 
Ранг матрицы равен двум. Последнее уравнение вычеркиваем.
Пусть x3 - свободное неизвестное. Тогда x1 = -3x3, 4x2 = 10x1 - 6x3 = -30x3 - 6x3, x2 = -9x3.
Полагая x3 = 1, имеем (-3,-9,1) - собственный вектор, отвечающий собственному числу λ = 1. Проверка:
.
Так как собственные числа действительные и различны, то векторы, им отвечающие, линейно независимы, поэтому их можно принять за базис в R3. Таким образом, в базисе  матрица A имеет вид:
.
Не всякую матрицу линейного оператора A:Rn → Rn можно привести к диагональному виду, поскольку для некоторых линейных операторов линейно независимых собственных векторов может быть меньше n. Однако, если матрица симметрическая, то корню характеристического уравнения кратности m соответствует ровно m линейно независимых векторов.
Определение. Симметрической матрицей называется квадратная матрица, в которой элементы, симметричные относительно главной диагонали, равны, то есть в которой .
Замечания. 1. Все собственные числа симметрической матрицы вещественны.
2. Собственные векторы симметрической матрицы, соответствующие попарно различным собственным числам, ортогональны.
В качестве одного из многочисленных приложений изученного аппарата, рассмотрим задачу об определении вида кривой второго порядка. 

Комментариев нет:

Отправить комментарий